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Most of the literature on the topic of interfailure times fol-
lowing repair is based on the assumption of maximal repair; that

0... is, a failed item is restored to a condition equal to that of a
new item. For some applications, the validity of this assumption
has been challenged. In this paper we study the situation wherein

LL. the failed item is assumed to have been restored to a condition
_equal to its condition just prior to failure. This is known as

minimal repair. We contrast the two repair policies, cite- some
implications of minimal repair, and obtain some preservation prop-
erties. Finally, we draw attention to the fact that under certain
conditions, minimal repair actions generate a class of survival

Cfunctions which cannot be described by any of the well known prop-
erties of ageing studied in reliability theory.
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1. INTRODUCTION

In this paper we attempt to describe the stochastic behavior

of a sequence of random variables which arise in a study of re-

pairable systems. Much of the published literature on this topic

is based on the assumption that the repair of a failed item re-

stores it to the status of a new item, so that the available ma-

chinery of renewal theory can be applied. Such perfect repair ac-

tions will be termed "maximal repair." In a series of papers,

mostly published in the engineering literature, Ascher, 1968,1979,

and Ascher and Feingold, 1978,1979, have questioned the reason-

ableness of maximal repair in many applications, and have thus

questioned the value of the ensuing results. Their assertion is

that in practice repair is imperfect, in the sense that a failed

item is often restored to a condition which is the same as its

condition just prior to failure, or at best, to a condition which

is slightly better. Thus the need for a more realistic descrip-

tion of the stochastic behavior of interfailure times following

repair is germane, and this paper is a preliminary effort towards

that goal. Here, we shall focus attention on repair actions which

restore a failed item to a condition equal to its condition just

prior to failure. Barlow and Hunter, 1960, term such imperfect

repair actions "minimal repair actions"; Ascher and Feingold,

1969, use the more colloquial expression "bad as old" to refer to

the state of the item after repair. It is appropriate to mention

here that in Lewis, 1964, and in Brown and Proschan, 1980, certain

aspects of imperfect repair have been considered; however, their

models, approaches, and the nature of their results are quite dif-

ferent from ours.

Examples of minimal repair actions are:

(1) A TV set has stopped functioning because of the failure

of an integrated circuit (I-C) panel. The set functions as soon

as the failed panel is replaced. If the other components are left
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alone, the set is not like a new one; minimal repair has been per-

formed.

(2) A tire which has several miles on it is punctured by a

nail and goes flat; the vehicle using the tire is considered to

have failed. A repair of the puncture restores the vehicle to an

operational status. If we assume that the puncture patch has not

strengthened the tire by a significant amount, then a minimal re-

pair has been performed on tle vehicle.

(3) A coronary occlusion may cause heart failure. Cardiopul-

monary resuscitation (CPR) may revive the patient. Assuming re-

vival without damage to vital organs, we may view CPR as minimal

repair.

1.1 Notation and Preliminaries

Let 0 be a measure space endowed with a probability measure P -

defined on the class L of Borel sets in 0. Let I denote the set

of positive integers, and for every n E I, we shall define a fi-

nite, nonnegative, and real valued function X(n;w) which is a P-

measurable function of w c S2. In the interest of brevity, we

write X(n) instead of X(n;w), and note that {X(n)} is a stochastic

process whose domains are the sets I and 0.

For our development, we shall require that X(n) < X(n+l), n =

1,2,...; the motivation for this requirement will be clarified

later.

For every fixed n, X(n) is a random variable whose distribu-

tion function we shall denote by Fx n) x). The survival function

P{X(n) > x} is denoted by FX(n) (x) = I - Fx(n)(X).

For an arbitrary finite set of n-values, say n = 1,2,...,m,

the corresponding random variables X(l),X(2),...,X(m) will have a

joint m-dimensional distribution, with distribution function

Fx()... ,X(m) (Xl Xm) = {X() < X1 ,... ,X(m) < Xm}.

The family of all these joint probability distributions for
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m 1,2,..., and all possible values of (xl,*...Xm), constitutes

the family of finite dimensional distributions associated with

the {X(n)} process. Since I is discrete, the family of finite di-

mensional distributions uniquely determines the probability that

the point X = CX(l),X(2),...) belongs to any Borel set of ?.

We shall designate the life length of a new item by X(l), and

whenever there is no cause for confusion, write F(x) for FX(l)(x).

In what follows we present certain useful notions which are stan-

dard in reliability theory.

The failure rate r(x) def limto CF(x+t) - F(x))/tl-F(x)) is

assumed to exist, and the cumulative failure rate R(x) = Ix r(u)du

is related to the survival function F(x), by F(x) = exp[-R(x)].

Since items subjected to repair and other maintenance actions

are those which age or experience wearout, a characterization of

wear (see Barlow and Proschan, 1975, Ch. 4) given in Definition I

will be useful. The notation "H(x) 1(4) x" denotes that the func-

tion H(x) is nondecreasing (nonincreasing) in x.

Definition 1. A distribution F (or its survival function F)

with F(O) = 0 is

(a) IFR(DFR) 'if P(x+t)/P(x) 4(t) x, for x > 0 and each t > 0;

(b) IFRA(DFRA) if -x- logF(x) t(+) x, for x > 0;

(c) DMRL(IMRL) if f' F(tlx)dt +(t) x, for x > 0;

(d) NBU(NWU) if F(x+y) <(>) F(x)F(y), for x,y > 0;

(e) NBUE(NWUE) if 1' F(t+xlx)dt <P) IO F(t)dt, for x > 0;

F(tlx) denotes the conditional reliability of a unit of age x.

The notation "A => B" denotes that A implies B. The following

chain of implications is well known (see, for example, Haines and

Singpurwalla, 1974, p. 62):

NBUE <-- DMRL <= IFR -> IFRA = NBU --> NBUE

NWUE <= IMRL <- DFR = DFRA - NWU = NWUE.

I.
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2. STOCHASTIC PROCESSES GENERATED BY
MINIMAL AND MAXIMAL REPAIR

For convenience, we denote our collection of random variables

{X(n); X(n+l) > X(n), n e II, where X(n) is the time of the suc-

cessive failure, by {X(n)}. Based upon considerations which de-

scribe minimal repair, we note

Property 1. The stochastic process {X(n)}, with X(O) def 0,

generated by a minimal repair policy is such that for all n e I,

P{X(n+l) > y I X(n) = x, X(n-l) = z .... }

= P{X(n+l) > y I X(n) = x} = P{X(l) > y I X(l) > x}

for all z < x,..., and all 0 x < y <.

Property 1 states that for each n c I, the distribution of

life length following the nth failure, given that the nth failure

occurred at x, is the same as the distribution of the first life

length given that it was at least x. This characterizes a mini-

mal repair action, for such an action restores the item to the

operable state it was in just before failure. In effect, the

failure and the associated maintenance action have no discernible

effect on the ageing process.

It follows from the above (also see Blumenthal, Greenwood, and

Herbach, 1976), that the counting process generated by a minimal

repair policy is a nonhomogeneous Poisson process having an in-

tensity rate equal to the failure rate of the life distribution F.

Specifically, if N(x,t] denotes the number of minimal repair ac-

tions that occur in (x,t], 0 < x < t, then for all m c I,

P{N(x,t] = m} = e-CR(t)-R(x))CR(t) - R(x))m/m!.

In contrast to minimal repair we have maximal repair, wherein

a failed item is either totally overhauled so that it becomes as

good as new, or better still, replaced by a new unit. For this

we have
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Property 2. The stochastic process {X(n)}, with X(O) def 0,

generated by a maximal repair policy is such that for all n e I,

P{X(n+l) - y I X(n) = x, X(n-1) = z,....

= P{X(n+l) > y I X(n) = x} = P{X(1) > y = x}

for z < x,..., and all 0 < x < y < -.

Note that a maximal repair policy generates an ordinary re-

newal process. Also, both the minimal and the maximal repair pol-

icies exhibit a Markov property.

2.1 A Characterization of the ExponentiaZ Distribution

We use the notation of Section 1, and let -F n+l) (YX)

denote P{X(n+l) > y I X(n) = x}. Then, under a minimal repair

policy, {X(n)} is such that

1 for 0 <y < x
F x(n+l) IX(n) ( Y lx ) = F(l) ( Y )  (2.1)

FX(1)(X) for 0 , x < y <

and FX(l)(x) 0 0, and under a maximal repair policy {X(n)} is

such that

FX(n+l)IX(n)(Ylx) = FX(l)(y-x), for 0 < x < y < . (2.2)

The exponential distribution has played a unique role in re-

liability theory, by virtue of the fact that in Definition 1, it

is the only distribution which is a member of every defining class

and its dual. For example, the exponential distribution is both

IFR and DFR. An analogous role is played by this distribution

with respect to minimal and maximal repair policies. We state

this more precisely in the following characterization theorem.

Theorem 1. The stochastic process {X(n)} satisfies both
(2.1) and (2.2) if and only if FX(1) is an exponential survival

function.



7

3. PRESERVATION PROPERTIES OF A MINIMAL REPAIR POLICY

For items subjected to minimal repair, interest often centers

around the conditional interfailure time Y(n+l) given X(n), where

{Y(n+l) = X(n+l) - X(n)} and X(n) is the time of last failure/res-

toration. Of particular interest are the ageing characteristics

of Y(l) = X(l), the time to failure of a fresh unit. Our goal

here is to describe those characteristics of X(l) that are pre-

served by Y(n+l)IX(n) when a minimal repair policy is in effect.

Equation (2.1) implies that {Y(n)} is such that

F FX(1) (Y+X)
FY(n+l)IX(n)(Ylx) = FX(n+l)IX(n)(y+x x) = FX(l X) )

FX(l)(X

In what follows, we adopt the convention that a property, say

7r, holds for the survival function FY(n+l)IX(n)(Ylx), if and only

if it holds for all values of x. We introduce

Definition 2. A class of distributions, say S, is said to be

closed under minimal repair, if {X(n)} satisfies (2.1), and

FX(l) E S -> FY(n+l)IX(n) ' S, V n e I.

When the above implication fails to hold, we shall say that S is

not closed under minimal repair.

Theorem 2, given next, is a key result of this paper. Figure

1 illustrates the implications of the theorem for the IFR class

and its associated chain of implications. If an implication is

not shown, then there exists an example to show that it is not

true.

Fx(l)

FIGURE 1. Chain indicating which of the ageing characteristics
of FX(1) are preserved by Fy(n+l)IX(n ) .

.. . . .r. . . . . . .. . . .... _ . . . . .. . . . . . .. . . . . .
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Theorem 2.

(a) The IFR and DMRL classes are closed under minimal repair;

(b) The IFRA, NBU, and NBUE classes are not closed under min-

imal repair.

Analogous results hold for the DFR class and its associated

chain of implications.

Proof: The proof consists of the series of lemmas given below.

Lemma 1. Let {X(n)} satisfy (2.1). Then for all n e I,

(a) FX() IFR(DFR) =--> F(n+l) IX(n)IFR(DFR),

(b) F Y(n+I)IX(n)NBU(NWU) => FX(1) IFR(DFR),

(c) FY(n+)IX(n)NBUE(NWUE) -- > FX(l) DMRL(IMRL).

Proof: X(n) satisfying (2.1) => for any 6 > 0, and y > 0,

= FX() (Y+x+6)

F Y(n~) X(n) cY 6 x) FX W(X

Thus

FY(n+l)IX(n) (y+61x) FX(1)(y+x+) FX(1)Q(x)
FY(n+) IX(n) (Y x) Px(,) ix) Fx() (Y+x)"

However,

FX(1) (y+x+6)
F IFR(DFR) -> JX(1)(y + (t) y,
X(l) FXl(Y+X)

and this establishes part (a) of the lemma. To prove part (b),

let us assume that FX(1) is not IFR. Then for some x, t, and 6,

FX(l)(x+ 6+t) FX(,)(X+t)
F'X(Z) (X+6) > W() x

FX(l)CX

Rearranging, dividing both sides of the above inequality by

FX(1)(x), and using the fact that {X(n)} satisfies (2.1), 'iave

X[l
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Thus FY (+l)IX(n) is not NBU, and the result follows.

* To prove part (c), we note that if FY( +1) jX(n) is NBUE(NUJE),
then for T >- 0,

FYn )X(n)(T+Ylx) xit (() f~dT
o FY(fl+I)1X(fl)(Y r) T 0 Y(fl+l)IX(fl)(TX

So

fcc FX(n+l) X n (~ y X X dti ( >) fcc -- ~ l~ TO FX(n+l)IX(n)(Y+xlx) 0 X(n+l) jX(n) C~~~t

which implies

cco FK(l) (T+Y+X) F (~ fcc X( c
o Xl(Y+x) C-T 0 W 1 .(x

and, hence,

f~x FXl(IYxd ~) c X(l)(xd,

which establishes that X(l) is DNIRL(IU4RL).

To show closure under minimal repair of the DMRL and the IMRL
classes of life distributions, we shall state and prove

Lenwra 2. Let {X(n)1 satisfy (2.1). Then, for all n c I,

FX~)DML(VIRL == FY(n44 ) X(n) DML(IMRL).

Proof: Fxl DMRL(IMRL) =

Fc Xl) (tY+X) dt~)fcFX(l) (t+Y+6+x)

TX ~ ~ ~ 0F(l) (+Td P '()(Y+6x cit

for all t )0 and 6 > 0. But then
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F ~X(1) (t+y+x) FX(l) (Y+x)1

I

o0 F!X(l)(X W FXC1()W dt

<> F X~l) (t+Y+6+x) / (I) (y+6+X))d
FX(l(x) F X(-)(x) J

and hence,

F y(n+lllX(n(t+ylx) Py(n+lllX(n)(t+6+yIx)

Fyl(n+l)IX(nl)(Ylx) dt F Y(n+l)IX(n)(Y+ 6 1x) .

But this implies that FY(n+l)iX(n)(.Ix) is DMRL(IMRL) for each x.

Using Figure 1 and its DFR class counterpart, together with

the well known facts that IFRA #=> IFR and DFRA =+- DFR, we can

easily establish that the IFRA and DFRA classes are not closed

under minimal repair. However, we have the following much strong-

er result.

Lenoa 3. Let {X(n)} satisfy (2.1). Then for all n c I,

FX(1)IFRA(DFRA) Y(n+l)IX(n)NBUE(NWUE).

The details of the proof of this lemma are given in Balaban,

1978. For the IFRA class it rests on the following counterexample:

1i , 0 '< x < 1

FX(l)(x) = 2(-x), x < 2

,-x ,2 x.

For the DFRA class the following counterexample is used:

0 xx

ex/2, 4 x.

This lemma has important practical consequences, since it es-

tablishes that IFRA(DFRA) life lengths under the action of mini-

mal repair generate conditional distributions whose properties

S
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cannot be described by any of the well known notions of ageing

studied in reliability theory. More about this will be said in

Section 5.

Nonclosure of the NBU (NWU) and the NBUE (NWUE) classes under

minimal repair is proved in Lemma 4, part (a) of which is a more

general statement of lack of closure.

Lenma 4. Let {X(n)} satisfy (2.1). Then, for all n e I,

(a) F X(l)NBU(NWU) /=> FY(n+l)IX(n)NBUE(NWUE),

(b) FX(l)NBUE(NWUE) -44 FY(n+I)IX(n)NBUE(NWUE).

Proof: We prove part (a) by contradiction; the proof of part

(b) is almost identical to the proof of part (a). Suppose that

FX(l)NBU(NWU) => FY(n+l)IX(n)NBUE(NWUE)"

But Fy(n+l)IX(n)NBUE(NWUE) > FX(1)DMRL(IMRL), by Lemma 1(c), and

FX(l)DML(IMRL) => Fy(n+l)IX(n)DMRL(IMRL) by Lemma 2. Thus we

have

FX(l) -----> FY(n+l)IX(n)nDMRL(IMRL).

To see that the above arguments lead us to a contradiction, we

make use of Lemma l(b) to establish that FX(I'IFRA(DFRA)

FX()NBU(NWU) --> Fy(n+IX(n)IFR(DFR) - Fy(n+I) IX@n)lFRA(DFRA),

which according to Lemma 3 is false.

The proof of Theorem 2 is now complete.

Another counterexample which will immediately show nonclosure

of the IFRA, NBU, and NBUE classes under minimal repair, is pro-

vided by the survival function of a parallel system of two inde-

pendent components, each having an exponential survival function

with scale parameter Xi, i = 1,2, and Xi X However, this
1 2*

counterexample cannot be used to show nonclosure of the DFRA, NWU,

and NWUE classes, and thus the need for Lemmas 3 and 4.
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4. A BOUND FOR THE CONDITIONAL SURVIVAL FUNCTION

The preservation properties of Theorem 2 enable us to take

advantage of the several known bounds and inequalities of reli-

ability theory (Barlow and Proschan, 1975, p. 109) for

FY(n+l)IX(n), once we know its ageing characteristics. For ex-

ample, bounds on FY(n+l)jX(n) can be obtained once we know that

it is IFR (DFR). From Lemma 1, we also note that for all n c I,

Fy(n+l)IX(n)IFR(DFR) = Y(n+l)IX(n)NBUE(NW U E) F X(l)IFR(DFR),

so that FY(n+l)IX(n)is IFR (DFR) if and only if FIX(l) is IFR (DFR).

However, the fact that F X(I)IFRA(DFRA) 4 F y(n+I)IX(n)NBUE(NWUE)

* (see Lemma 3) motivates us to develop some new bounds for

FY(n+l)IX(n). This is particularly germane since IFRA lifetimes

can arise quite naturally in practice. For example, if we con-

sider the coronary occlusion situation of Section 1, and treat

each occlusion as a shock to the heart muscle, then from the the-

ory of shock models and wear processes (Esary, Marshall, Proschan,

1973), it follows under some very general conditions that the time

to failure of the heart muscle is IFRA. If a revival of the

patient by CPR can be regarded as a minimal repair action, then

by Lemma 3, the time to the second failure of the heart, 'ondi-

tional on the time to the first failure, cannot be described by

any of the notions of ageing given in Definition 1. This moti-

vates us to describe the life length Y(n+l)IX(n) under the assump-

tion of minimal repair, and under the assumption that X(l) is

IFRA, a task presently under investigation. A useful upper (lower)

bound on PY(n+l)IX(n) motivated by the IFRA (DFRA) property of

FX(l) is given in Theorem 3.

Theorem 3. Let {X(n)} satisfy (2.1), and let F be IFRA
X(l)

(DFRA). Then, for all n E I, 0 < y < - and x 0,

FY(1+ 1) X(n) ( Jx) <()) [FX() (+x) ] / (y+x)
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Proof: FX( )IFRA(DFRA)

FX(l)(a) <(>) [FX(l)(x)] , for 0 < a < 1.

Thus

F l n (y IX) =FX(I) (y4) FX(I)(y+x) FX(l)(y+X)
Y((+l)IX(n)(PIX)) (lQ ) - FX(l)CL(Y+x)J - X(1)(y+)

for a = Cx/(y+x)D. By the defining property of IFRA(DFRA),

FX(I)(Y+x) _FP(1 (y1x) - -- [FX(1) (y+X)

or that

'Y(n+l) IX(n) (Y Ix) <(>) [TX(l) (y+x) 1Yl (y+x).

5. COMPARISON OF THE STOCHASTIC PROCESSES GENERATED
BY MINIMAL AND MAXIMAL REPAIR POLICIES

The ageing properties of a new item provide us with a vehicle

for comparing the relative desirability of a minimal repair policy

versus a maximal repair policy. This in turn helps us choose a

particular maintenance policy. Specifically, for an item which

ages, a maintenance policy involving a complete overhaul or re-

placement is more desirable than one involving minimal repair,

provided that cost and resource considerations are put aside.

The converse is true for items which improve with age. More for-

mally, we have:

Theorem 4. If FX(l) is NBU(NWU), then for all i E I,

P[Y(i+l) >, tjX(i) = x and {X(n)} satisfying (2.1)]

( ) P[Y(i+l) > tjX(i) = x and {X(n)} satisfying (2.2)].
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Proof: Obvious, since the left-hand side of the above is

Fx(l)(t+x)/Fx(l)(x) and the right-hand side of the above is

FX(l)(t).

In order to develop some properties of joint life lengths oc-

curring under minimal and maximal repair policies, we shall first

present a basic definition pertaining to a general relationship

among independent and certain types of nonindependent life lengths.

Definition 3 (Barlow and Proschan, 1975, p. 29). Random var-

iables X = (XI,.. .,Xn) are associated if

Cov[r(X),A(X) ] > 0

for all pairs of binary increasing functions F and A.

Association implies a positive dependence among random vari-

ables; in the context of reliability theory, this is often realis-

tic. Conditions for the association of interfailure/restoration

times Y(i), i = l,...,n are given in Theorem 5 below.

Theorem 5. The sequence {Y(i)}, i = 1,...,n is associated if

(a) {X(n)} satisfies (2.2)

(b) {X(n)} satisfies (2.1) and FX(l) is DFR.

Proof: Part (a) follows trivially from the fact that when

(X(n)} satisfies (2.2), the Y(i)'s are independent, and indepen-

dent random variables are associated. To prove (b), we can show

that under the conditions of the theorem, Y(l),...,Y(n) are con-

ditionatly nondecreasing in sequence (see Barlow and Proschan,

1975, p. 146), and are therefore associated.
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